robotic blow

Motion Controls Robotics’ created the Robotic SUBTA system, a pre-engineered robotic system designed for PET blow-molded bottle handling. The system uses different robotic units depending on the type of machine that is being unloaded. The Robotic SUBTA system grabs and sets the bottles on a conveyor, standing up, acting as a takeaway unit. The system provides increased throughput due to high reliability and uptime and cycle times faster than most mold machine rates. The Robotic SUBTA system also requires a minimum of floor space, a high priced commodity in a manufacturing facility.
The plastics manufacturer also considered a vendor with a fixed automation system that included a simple slide but decided that system wasn’t reliable enough for its needs. In addition, every time the mold tooling changed, the slide also had to be changed to accommodate the new product. This created a higher cost to change tooling that was not acceptable. The facility included one machine with a manufacturers fixed automation system, but they wanted to find a more flexible and reliable solution.
So what are Julie and I up to this week? Well, in addition to recording episodes on personhood, milk and mermaids, we also published two exciting episodes that should expand your mind on the topics of human creativity, machine intelligence and the processing power of the human infant. So here are the breakdowns as well as the embedded feeds for each episode.
Everything in the plant runs much more smoothly. More bottles are being produced, but the pace seems slower since there was a reduction in complexity in the system,” said the plant manager. “We have seen a reduction in the commotion and activity since employees can now work at a constant pace and succeed without as much physical effort. We also have a greater chance to understand the bottlenecks in the manufacturing process. We are reviewing to see where we can make an economic justification for adding automation,” said the plant manager. “We chose the ones that are simple to execute first that run one mold all day, as well as the systems with the highest stress strain or ergonomic safety issues. We are looking for future automation as soon as we can.
The company contacted Motion Controls Robotics to ask them to help develop a solution that would automate its bottle take out process and alleviate its safety and ergonomic issues due to repetitive stress injuries. They also wanted to create a solution that would reduce scrap, which ultimately would help increase sales without having to produce more product than it did in the past.

It's like this: I've always wanted to try a Fleshlight. Who wouldn't want to try a Fleshlight? But then again, who wants to be someone who has used a Fleshlight? Sure, we can all claim to live in a very sex-positive generation, but there is a major stigma involved with the kind of person who owns a pocket vagina. Say the words “Fleshlight owner” out loud, and you'll automatically picture some chunky men's rights activist in a “Take Me to Your Dealer” t-shirt who lives at home and works in middle management at a Best Buy.
Everything in the plant runs much more smoothly. More bottles are being produced, but the pace seems slower since there was a reduction in complexity in the system,” said the plant manager. “We have seen a reduction in the commotion and activity since employees can now work at a constant pace and succeed without as much physical effort. We also have a greater chance to understand the bottlenecks in the manufacturing process. We are reviewing to see where we can make an economic justification for adding automation,” said the plant manager. “We chose the ones that are simple to execute first that run one mold all day, as well as the systems with the highest stress strain or ergonomic safety issues. We are looking for future automation as soon as we can.
It combines the automatic feeder with the automatically moving electric screwdriver to realize the complementary supply of screws and the locking, which greatly improves the production efficiency and saves manpower. Once the screwdriver is lifted after locking the screw, the automatic feeder will send the other screw to the Escape of the automatic feeder. The screwdriver head absorbs the screw and the robot can automatically move according to the coordinate point and tighten it. This is particularly suitable for multi-station workpieces of the same specification. 
The plastics manufacturer had used its manual take out system for its entire history for nearly 20 years. This manual system had several pitfalls including a large amount of scrap, which in turn meant money down the drain in throwaway products. The manual system also lacked reliability and increased chances for injuries. The company brought technology into its facility to help increase the production of quality products while making the plant safer for its employees. The company also hoped to increase its sales by improving the manufacturing process efficiencies through automation. Prior to automation, the company had to turn away opportunities to increase its business due to capacity limitations.
It combines the automatic feeder with the automatically moving electric screwdriver to realize the complementary supply of screws and the locking, which greatly improves the production efficiency and saves manpower. Once the screwdriver is lifted after locking the screw, the automatic feeder will send the other screw to the Escape of the automatic feeder. The screwdriver head absorbs the screw and the robot can automatically move according to the coordinate point and tighten it. This is particularly suitable for multi-station workpieces of the same specification.  

Screw Locking Machine, Screw Locking Robot, Screw Locking Equipment manufacturer / supplier in China, offering Desktop Robotic Screwdriver/Desktop 4-Axis Blow-Type Double Head Double Y Screw Locking Robot/Automatic Fastening Machine/Automatic Locking System, Desktop 4-Axis Blow-Type Double Head Double Y Automatic Fastening System, Desktop 4-Axis Blow-Type Double Head Double Y Automatic Fastening Machine and so on.
×