robotic blow

It combines the automatic feeder with the automatically moving electric screwdriver to realize the complementary supply of screws and the locking, which greatly improves the production efficiency and saves manpower. Once the screwdriver is lifted after locking the screw, the automatic feeder will send the other screw to the Escape of the automatic feeder. The screwdriver head absorbs the screw and the robot can automatically move according to the coordinate point and tighten it. This is particularly suitable for multi-station workpieces of the same specification. 
The Motion Controls Robotic SUBTA has received a positive reception from the employees because of the ease of use and nearly flawless performance of these robots. To ward off any concerns from employees about potential layoffs within the plant, the company presented the new system as an opportunity to ramp up its technology and that new business was waiting for the company if the technology was added.
The Robotic SUBTA system is also flexible and precise since it handles any mold configuration (single or double row) and provides quick changeover using quick change tooling. This programmable built-in operator pendant has stored recipes and menu selection for patterns and allows for on-the-fly adjustments. The 20-part recipe keeps part data such as part description pick, place locations, and vacuum pattern.
The plastics manufacturer had used its manual take out system for its entire history for nearly 20 years. This manual system had several pitfalls including a large amount of scrap, which in turn meant money down the drain in throwaway products. The manual system also lacked reliability and increased chances for injuries. The company brought technology into its facility to help increase the production of quality products while making the plant safer for its employees. The company also hoped to increase its sales by improving the manufacturing process efficiencies through automation. Prior to automation, the company had to turn away opportunities to increase its business due to capacity limitations.
A national manufacturer of stock and custom plastic packaging solutions for the food packaging, chemical, automotive and household industries faced the challenge of improving its safety and ergonomics associated with its manual system of unloading its Nissei Bottle Making Machine at its manufacturing facility. The company also wanted to find a solution to reduce scrap and increase productivity.
The company contacted Motion Controls Robotics to ask them to help develop a solution that would automate its bottle take out process and alleviate its safety and ergonomic issues due to repetitive stress injuries. They also wanted to create a solution that would reduce scrap, which ultimately would help increase sales without having to produce more product than it did in the past.

The plastics manufacturer also considered a vendor with a fixed automation system that included a simple slide but decided that system wasn’t reliable enough for its needs. In addition, every time the mold tooling changed, the slide also had to be changed to accommodate the new product. This created a higher cost to change tooling that was not acceptable. The facility included one machine with a manufacturers fixed automation system, but they wanted to find a more flexible and reliable solution.

The plastics manufacturer also considered a vendor with a fixed automation system that included a simple slide but decided that system wasn’t reliable enough for its needs. In addition, every time the mold tooling changed, the slide also had to be changed to accommodate the new product. This created a higher cost to change tooling that was not acceptable. The facility included one machine with a manufacturers fixed automation system, but they wanted to find a more flexible and reliable solution.

×